Scattering RT in a 3D spherical atmosphere at mm / sub-mm wavelengths with ARTS

- C. Davis¹ S. Buehler² P. Eriksson³ C. Emde²
 - Institute of Atmospheric and Environmental Science University of Edinburgh

Institute of Environmental Physics University of Bremen

Department of Radio and Space Science Chalmers University of Technology

I3RC 2005

Outline

- Introduction
 - Motivation
 - Atmospheric Radiative Transfer System ARTS
 - ARTS Scattering Modules
- 2 ARTS-MC
 - Algorithm Description
 - Implementation
- Using ARTS
 - Control File Example
 - PyARTS
- Examples of ARTS use
 - AMSU-B simulations
 - EOS-MLS simulations

Motivation

- To simulate measurements by space-borne passive mm-submm instruments in the presence of clouds.
 - Aura-MLS, AMSU, Odin-SMR, JEM/SMILES, ...
- RT model requirements
 - Thermal atmospheric source (solar negligible)
 - Scattering -> 3D geometry, polarization
 - Limb Sounding -> spherical geometry

Atmospheric Radiative Transfer System - ARTS

- Stable version ARTS 1.0.x
 - Clear Sky only (1-D spherical shell)
 - spectroscopy, ray-tracing, clear-sky RT, sensor modelling
- Development version ARTS 1.1.x (pre 2.0)
 - Scattering
 - 3D geometry
 - Polarized RT
- Some details
 - developed in C++
 - distributed with user guide, examples, and test cases
 - Wiki http://www.sat.uni-bremen.de/arts/wiki
 - ARTS distribution freely available from http://www.sat.uni-bremen.de/arts/

ARTS Scattering Modules

ARTS-1.1.x has two modules capable of 3D polarized radiative transfer:

- ARTS-DOIT Emde et al., J. Geophys. Res., 109(D24), D24207, 2004
 - 1D or 3D Discrete Ordinates Iterative type model. Has similarities with SHDOM and VDOM, except extended to polarized RT and spherical geometry.
 - Solves the radiation field for the whole scattering domain (i.e. all angles, all grid points)
- ARTS-MC Davis et al., IEEE T. Geosci. Remote, 43(6), 1096-1101, 2005
 - Reversed Monte Carlo RT. Similar to Backward Forward Monte Carlo model by Liu et al, but uses importance sampling to properly account for polarization
 - Only solves for given position and viewing direction.

We have come to realise that ARTS-DOIT is **NOT** practical for realistic 3D cases. The rest of the talk covers ARTS-MC

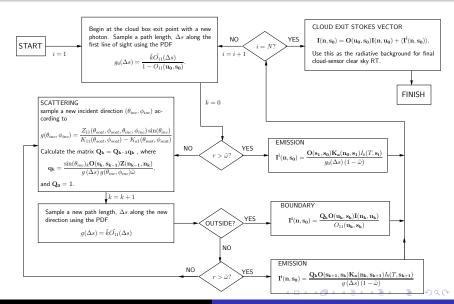
Why Reversed Monte Carlo?

- All computational effort is dedicated to calculating the Stokes vector at the location of interest and in the direction of interest.
- CPU cost scales more slowly than other methods with grid size. Large or detailed 3D scenarios are not a problem
- Optically thick media are no problem.
- Simple concept -> rapid development.
- Why not DOM?
 - Big CPU cost in calculating unwanted radiances
 - Cost scales badly with grid size
 - Not well suited to spherical geometry
 - Limb sounding requires a prohibitively fine angle grid.
- Why not forward MC?
 - big source/small target
 - optically thick medium makes this worse

ARTS-MC: Algorithm Description

We are solving the Vector Radiative Transfer Equation

$$\frac{d\mathbf{I}(\mathbf{n})}{ds} = -\mathbf{K}(\mathbf{n})\mathbf{I}(\mathbf{n}) + \mathbf{K}_{\mathbf{a}}(\mathbf{n})I_{b}(T) + \int_{4\pi} \mathbf{Z}(\mathbf{n}, \mathbf{n}')\mathbf{I}(\mathbf{n}')d\mathbf{n}'$$
 (1)

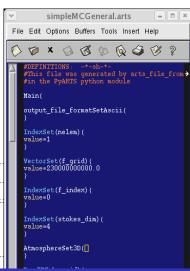

, where $\mathbf{I} = [I, Q, U, V]^T$. We solve this by applying Monte Carlo integration with importance sampling ...

$$\int f dV = \int \frac{f}{g} g dV \approx \left\langle \frac{f}{g} \right\rangle \pm \sqrt{\frac{\langle f^2/g^2 \rangle - \langle f/g \rangle^2}{N}}$$
 (2)

...to an integral form of the VRTE

$$\begin{aligned} \textbf{I}(\textbf{n},\textbf{s}_{\textbf{0}}) &= \textbf{O}(\textbf{u}_{\textbf{0}},\textbf{s}_{\textbf{0}})\textbf{I}(\textbf{n},\textbf{u}_{\textbf{0}}) + \\ &\int_{\textit{U}_{\textbf{0}}}^{\textit{S}_{\textbf{0}}} \textbf{O}(\textbf{s}',\textbf{s}_{\textbf{0}}) \left(\textbf{K}_{\textbf{a}}(\textbf{n})\textit{I}_{\textit{b}}(\textit{T}) + \int_{4\pi} \textbf{Z}(\textbf{n},\textbf{n}')\textbf{I}(\textbf{n}')\textit{d}\textbf{n}'\right) \textit{d}\textbf{s}' \end{aligned}$$

(3) ←□→←□→←□→←□→←□→□→□→□→○○

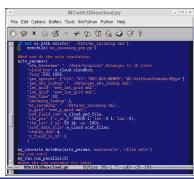

Implementation

- Atmospheric fields defined on Pressure, latitude, longitude grids
- Data I/O through ARTS specific XML file format (ascii or binary)
- Scattering properties calculated externally (PyARTS/T-matrix)
- scattering calculations confined to a subset of the atmosphere - cloudbox
- Currently there are two ARTS-MC Workspace Methods (I will describe WSMs later)
 - ScatteringMonteCarlo as described in my paper; pencil beam only, blackbody surface.
 - MCGeneral small changes to allow for surface reflection and 2D antenna functions

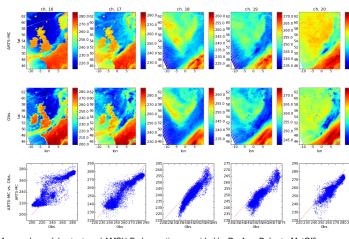
Control File Example

- Control files specify a sequence of commands in the ARTS "workspace"
- ARTS has predefined workspace variables. These can be listed by "arts -w all", and a description retrieved by "arts -d varname", e.g.

Control File Example

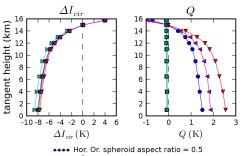

- User can combine a sequence of "workspace methods" (WSM) to perform a variety of tasks e.g.
 1D/3D clear/cloudy RT, propagation path calculation, interpolation of atmospheric fields onto new grids,...
- This example performs 3D RT with scattering, using the "MCGeneral" WSM
- MCGeneral has several keyword arguments, most of which determine the termination criteria. desired standard error, maximum time, or number of "photons".

PyARTS


is a python package which: calculates single scattering properties for non spherical hydrometeors (Mishchenko's T-matrix, Warrens REFICE), includes size distributions (e.g. MH 97), prepares everything else needed for ARTS scenarios, and acts as a front-end to ARTS.

- ARTS control files are flexible but not very nice, preceding example > 180 lines
- This PyARTS example calculates scattering properties, creates grids, cloud field, and does MC RT simulation (on 2 processors).
- python => can be used interactively.

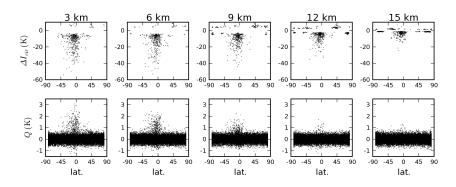
AMSU-B simulations


- UM output 220x180x60 grid
- coincident AMSU-B swath
- std err. 1K, 10-30s per pixel
- didn't realise UM iwc included snow!

Mesoscale model output, and AMSU-B observations provided by Dr. Amy Doherty, MetOffice

Aura MLS - Polarization

- MLS has both H and V polarizations for R1 (118GHz)
- simple box-shaped simulations show the expected effect of horizontally aligned ice particles on measured I
- Horizontally aligned particles give partial vertical polarization (+ive Q) with magnitude deceasing with tangent height.

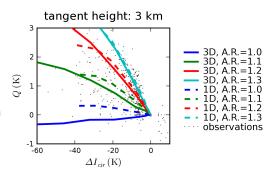


sphere

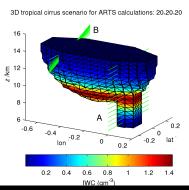
Hor. Or. spheroid aspect ratio = 2.0▶▶▶▶ Ran. Or. cylinder aspect ratio = 0.5 →→→ Hor. Or. cylinder aspect ratio = 0.5

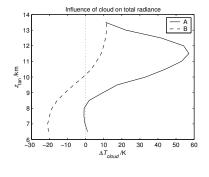
Aura MLS - Polarized observations at 122 GHz

Observations qualitatively similar to simulations - but polarization signal small


What does this say about shape/orientation?

Aura MLS - Interpretting Polarization


Effect of preferential orientation is mainly determined **in this case** by the ratio $\frac{K_{12}}{K_{jj}}$ and can be replicated by taking a single particle type, horizontally oriented, and modifying the aspect ratio. Easiest to use oblate spheroids.


- Comparison with ARTS simulations for 1D and 3D scenarios shows that data is consistent with aspect ratios in the range 1.2 ± 0.15
- Random orientation assumption used in operational retrievals seems OK for this cloud type

Aura MLS - 3D effects

IWC retrievals obtain IWC from $\Delta T_{cir} = T_{cloudy} - T_{clear}$, this conversion is based on results from very limited 1D simulations. These 3D simulations show that the use of a 1D model will result in large errors.

Future work

- Use ARTS-MC to improve Aura-MLS cloud products
- Build-up a very large data-set of simulated observations, with a representative distribution of atmospheric scenarios.
- This will allow the trial of different retrieval methods, regression, MCI (Evans), Neural Net.
- More robust cloud products with better error characterisation.

Credits

- ARTS Developers: Stefan Buehler, Patrick Eriksson, Claudia Emde, Oliver Lemke, Sreerekha Ravi,...
- JPL folk: Dong Wu, Jonathan Jiang
- T-matrix: Michael Mishchenko
- Model Validation: Alessandro Battaglia
- UM data: Amy Doherty
- Funding: NERC